

N TRAFFIC AND TRANSPORT ENGINEERING

CeNSU Centro Nazionale Studi Urbanistici

ANALYSIS OF LAND USE AND MOBILITY SCENARIOS FOR THE REDUCTION OF TRANSPORT ENERGY IN THE URBAN AREA OF CATANIA

Giuseppe Inturri^{*}, Matteo Ignaccolo^{*}, Michela Le Pira^{*}, Valentina Mancuso, Salvatore Capri^{*} University of Catania, Department of Civil Engineering and Architecture *AIIT member – Italian Association for Traffic and Transport Engineering

Research objectives

- Highlight the impact of transport on energy sustainability of urban areas
- Set up a methodology to calculate a transport energy indicator to support the delivery of sustainable land use and delivery of land use and transport urban plans
- Test the methodology in a case study

Transport Energy impacts

4

- 1/3 of energy
- 70% of oil
- 25% of CO2 emissions
- 2.5% average rate growth

130.0

120.0

Transport Energy Efficiency

INTRINSIC ENERGY INEFFICIENCY OF CARS less than 2% of consumed energy is used by the payload

Research Question

ethodology

Case Study

Results

Urban Energy Demand

- 10.000 km/pers/year
- 100 kwh/year/mq (including cooling and lighting)
- Waste management and urban deliveries not included

http://www.passivhaushomes.co.uk/whatisph.html

Urban density and transport energy

Figure 1 : The Newman and Kenworthy hyperbola: Urban density and cransport-related energy consumption

Case Stuc

UNIVERSITÀ degli STUDI di CATANIA

Average Density vs Spatial Dynamics

Land Use- Transport – Energy model

Transport mode choice model

TRANSIT	DE
THRESHO	LD
BUS	6
LRT	3
METRO	2

Choice	Distance	
WALKING	<500m	\mathbf{d}_{od}
CYCLING	<1000m	dod
BUS	<300+300m	Stop access/egress
LRT	<600+600m	Stop access/egress
METRO	<800+800m	Stop access/egress

Optimal demand flows assignment

THE TRANSPORTATION PROBLEM

Transport Energy Dependence

 t_{od} number of trips assigned from zone *o* to zone *d* to minimize *Z* (passengers)

$$l_{od}$$
 shortest distance between zone *o* and zone *d* (km)

$$e_v$$
 unit energy consumption of the chosen transport mode (kWh/km)

- c_v capacity of the vehicle (spaces)
- LF_v load factor (passengers/spaces)

2	Mode of transport	Unit energy consumption kWh/pax-km
	Private Car	0.917
	Regular Bus Transit	0.325
	Bus Rapid Transit	0.192
	Metro Transit	0.133

Kenworthy (2003)

Optimal demand flows assignment

Case Study - Catania

Methodology

Case Study

population

Car ownership rate (cars per 100 inh.)

Car ownership rate of Italian metropolitan areas

Catania Transport Model

- Transport demand: commuting flows (5 home-to-work trips/week)
- Transport supply:
- the road network, composed of 516 nodes and 1122 links;
- the transit network considers 49 bus lines, 4 BRT lines and 1 metro line.
- **PTV VISUM** software package:
- ✓ shortest paths by mode between all origin and destination pairs by all modes of transport (criterion: time)
- \checkmark option of **transit intermodality**

Shortest path by transit

Case Study

Scenarios

Research Question

Case Study

Conclusions

Results

Results

0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 Sc. 0 Sc. 1 Sc. 2 Sc. 3

Transport Energy Efficiency

Mode of transport	Unit energy consumption kWh/pax-km
Private Car	0.917
Regular Bus Transit	0.325
Bus Rapid Transit	0.192
Metro Transit	0.133

Transport Energy Dependence by zone

Jobs/Workers balance reduces the Transport Energy dependence

Research Question

v Ca

Results

Conclusions

Conclusions

Fuel Economy

VED for 12 mor

NakaNotei Superm Fueltype: Dasel

LowC^{VP}

Fuel Consumption Drive syche Urban Extris urban Cartilinet Cartilinet Cartilinet Cartilinet Cartilinet some Some av Direct with your deater.

Economic housing

ACKNOWLEDGMENTS

About SPECIAL

A European partnership - building the capacity of Town Planning Associations to plan and deliver sustainable energy solutions

Spatial planning has a key role to play in creating urban environments that support less energy-intense lifestyles and communities. Spatial planning and urban planners have a pivotal role in developing energy strategies and actions plans, and the SPECIAL project has been set up to help bridge the gap between climate change/energy action planning and spatial and urban planning.

http://www.special-eu.org/

Contact: ginturri@dica.unict.it

SPECIAL's key objectives

- To build the capacity of partner Town Planning Associations (TPAs), or their equivalent, to integrate sustainable energy solutions into spatial planning training, practice and delivery.
- To foster the exchange of experience and competence-building among national and regional TPAs, to demonstrate the integration of sustainable energy into spatial planning strategies at local and regional levels.
- To stimulate the improved energyrelated competence of town planners working within local authorities, leading to good practice examples of integrated spatial planning strategies for low-carbon towns and regions.

ASSOCIAZIONE ITALIAN

per l'INGEGNERIA del TRAFFICO

e dei TRASPORTI

The SPECIAL partners represent the professional Town Planning Associations of their respective countries

Austria

Provincial Government of Styria, Department of Spatial Planning Law

Germany German Institute of Urban Affairs

Greece

Organisation for the Master Plan and Environmental Protection of Thessaloniki (ORTH)

Hungary Hungarian Urban Knowledge Centre

Ireland Irish Planning Institute

> Italy National Centre for Town Planning Studies

Sweden Swedish Society for Town and Country Planning

UK Town and Country Planning Association (TCPA)

SPECIAL...

To find out more about SPECIAL, visit www.special-eu.org or contact:

Alex House **Projects and Policy Officer, TCPA** 17 Carlton House Terrace, London SW1Y 5AS e: alex.house@tcpa.org.uk t: +44 (0)20 7930 8903 Twitter: Twitter: @eu special

degli STUDI di CATANIA